Traitement du signal

Ecole de Détection de Rayonnements à Très Basse Température

J. Gascon

14 mai 2009, Fréjus

Webographie basique

▶ Présentation de Richard Schnee au "Training session Aussois 2008" ILIAS

http://pisrv0.pit.physik.uni-tuebingen.de/aussois08/

▶ Thèse de Philippe Di Stefano (EDELWEISS) chapitres 5-6

http://tel.archives-ouvertes.fr/tel-00009267/fr/

► Thèse de Sunil Golwala (CDMS) appendice B

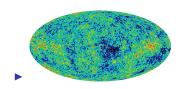
http://cosmology.berkeley.edu/preprints/cdms/golwalathesis/thesis.pdf

▶ Site *mkfilter* de Tony Fischer

http://www-users.cs.york.ac.uk/ fisher/mkfilter/

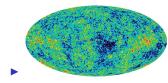
Différents types de signaux

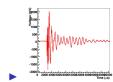
- ▶ Image
 - Médical
 - Fond cosmologique



Différents types de signaux

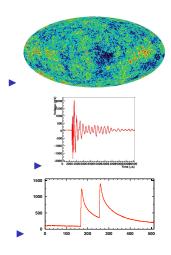
- ▶ Image
 - Médical
 - ► Fond cosmologique
- Signaux fugitifs variables
 - Séismologie
 - Ondes gravitationnelles





Différents types de signaux

- ▶ Image
 - Médical
 - Fond cosmologique
- Signaux fugitifs variables
 - Séismologie
 - Ondes gravitationnelles
- Signaux fugitifs homothétiques
 - Détection de photons X, γ
 - Impulsions de scintillation, de charge, de phonons



Traitement de signaux impulsions

Fonction du temps S(t)

- **Fugitif:** l'excitation arrive à un temps précis t_0
- ► **Homothétique:** forme invariante r(t)
- Les seules informations par impulsion sont:
 - ightharpoonup Temps t_0
 - ► Amplitude *A*

$$S(t) = Ar(t - t_0)$$

- ▶ Traitement = extraction de A et t_0 pour chaque impulsion
- Cas moins idéaux:
 - Plusieurs familles d'impulsions selon le type d'excitation: $r_1(t)$, $r_2(t)$, $r_3(t)$, ...
 - Forme dépendant de A: r(t, A)

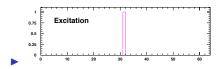
Traitement online vs offline

- Traitement préalable effectué par l'électronique de lecture
 - Filtrage
 - 2. Déclenchement
 - 3. Numérisation
- Electronique de plus en plus numérique
 - 1. Filtrage
 - 2. Numérisation
 - 3. Filtrage numérique
 - 4. Déclenchement
- Traitement offline: avantages et inconvénients
 - ▶ Plus de temps, de CPU, de comparaisons entre algorithmes
 - ▶ Echantillons avant et après le signal
 - Seuls les échantillons sauvés par le déclenchement sont disponibles

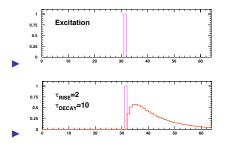
Quelle est le meilleur traitement?

Dépend de l'objectif

- Analyse online
 - ▶ "Embarquée" (électronique de lecture) ou sur ordinateur
 - Traitement en temps réel (données futures non disponibles)
 - Efficacité, rapidité, robustesse
- Analyse offline rapide
 - Alerte en cas problèmes (les révéler plutôt que les filtrer)
 - Pas de complexité inutile
- Analyse offline pour comprendre (étude, thèse, article NIM)
 - Analyses longues, parallèles: exploration et haute performance.
- ► Analyse offline pour convaincre (lettre, grand public)
 - Impact visuel et psychologique
 - Pas de complexité inutile

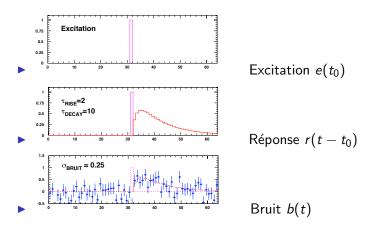


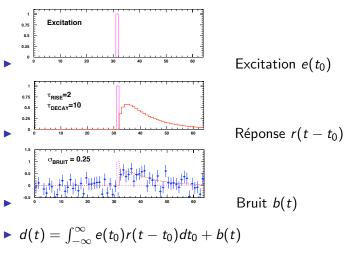
Excitation $e(t_0)$



Excitation $e(t_0)$

Réponse $r(t-t_0)$



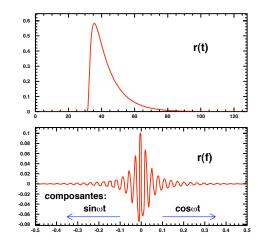


Représentation en temps et en fréquence

Transformée de Fourier $(\omega = 2\pi f)$

$$\tilde{r}(f) = \int_{-\infty}^{\infty} \exp^{-j\omega t} r(t) dt$$

$$r(t) = \int_{-\infty}^{\infty} \exp^{j\omega t} \tilde{r}(f) df$$



Cas discret

- ▶ N pas en temps sur un intervalle T, $t_k = k\Delta t = \frac{nT}{N}$ $(T \neq \infty)$
- $ightharpoonup r(t)
 ightharpoonup r_k$
- Fréquence $f_n = \frac{n}{T} = \frac{n}{N} \frac{1}{\Delta t}$

$$ilde{r}_n = rac{1}{N} \sum_{k=-rac{N}{2}}^{rac{N}{2}-1} r_k \exp^{-j\omega_n t_k} \qquad r_k = \sum_{n=-rac{N}{2}}^{rac{N}{2}-1} ilde{r}_n \exp^{j\omega_n t_k}$$

- ▶ Représentation complète de r(t) par r_k ou \tilde{r}_n si les composantes $\tilde{r}(f) = 0$ pour $f > f_{Nvauist}$ ($f_{Nvauist} = \frac{1}{2} \frac{N}{T}$).
- Frequence $f > f_{Nyquist}$ repliés à $f f_{Nyquist}$: filtre "anti-alias"

Information sur t₀ dans l'espace fréquence

Continu:

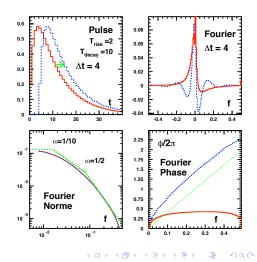
$$r(t - t_0) =$$

$$\int_{-\infty}^{\infty} \exp^{j\omega t} \exp^{-j\omega t} \tilde{r}(f) df$$

Discret:

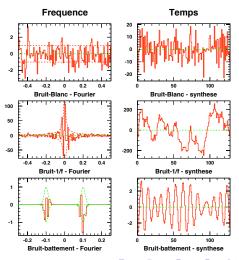
$$r_k(t_0) =$$

$$\sum_{n=-\frac{N}{2}}^{\frac{N}{2}-1} \tilde{r}_n \exp^{j\omega_n t_k} \exp^{-j\omega_n t_0}$$



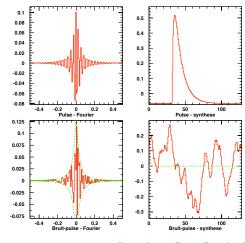
Type de bruits

- ▶ Bruit blanc puissance (dispersion σ_f) égale à toute fréquence, dispersion σ_t égale en tout temps
- ▶ Bruit 1/f domine à basse fréquence
- Oscillation
 Une fréquence précise
- BattementMélange de fréquence



Information sur t₀ dans l'espace fréquence

- Exemple: deux échantillons de puissance r²(f) égale:
 - En haut: impulsion
 - ► En bas: bruit
- "Bruit" obtenu par l'incohérence des phases aux différentes f_n (φ(r_n) aléatoire)
- ➤ Discrimination signal/bruit: utiliser cette propriété de corrélation



Analyse en temps

- Bien adaptée lorsque le bruit est blanc
- Pour une moyenne sur le temps très longue

$$< n(t) >= 0 \qquad < n^2(t) >= \sigma^2$$

Pour N échantillons

$$< n_k > = 0 \pm \frac{\sigma}{\sqrt{N}}$$

$$< d_k > = A < r_k > \pm \frac{\sigma}{\sqrt{N}}$$

Avantageux d'intégrer tant que $\langle r_k \rangle$ ne décroit pas trop vite

Calage en temps

Si la plage en temps couvre tout r(t), < r_k > est fixe et normalisable à 1:

$$< d_k > = A \pm \frac{\sigma}{\sqrt{N}}$$

- ▶ Si des morceaux de r(t) dépassent les bornes d'intégration, $A = \langle d_k \rangle / \langle r_k \rangle$ dépend de $\langle r_k \rangle$ sur cette plage
- Si on intègre sur des régions où r_k est faible, on diminue le signal sur bruit $< r_k > \sqrt{N}/\sigma$
- ▶ L'information sur le calage en temps dépend de la dérivée de la fonction: $\frac{d}{dt}d(t) = A\frac{d}{dt}r(t)$, et sensible au bruit haute fréquence

Minimisation de l'erreur sur A

► Adaptons la fenêtre d'intégration en pondérant les échantillons avec un poids *w*_k

$$\sum w_k d_k = A \sum w_k r_k + \sum w_k b_k \rightarrow \langle \vec{w} \cdot \vec{d} \rangle = A \langle \vec{w} \cdot \vec{r} \rangle$$

$$A = \frac{\langle \vec{w} \cdot \vec{d} \rangle}{\langle \vec{w} \cdot \vec{r} \rangle} \qquad \sigma_A^2 = \frac{\langle \vec{w} \cdot \vec{w} \rangle \sigma^2}{\langle \vec{w} \cdot \vec{r} \rangle^2}$$

▶ Minimisons σ_A^2/A^2 par rapport à w_j , on trouve

$$w_j = r_j \frac{\langle \vec{w} \cdot \vec{w} \rangle}{\langle \vec{w} \cdot \vec{r} \rangle}$$

Le meilleur filtre w_j est le signal r_j lui-même: $rac{d}{dA}d(t)=r(t)$

Convolution et χ^2

Essayons plutôt de minimiser le χ^2 :

$$\chi^2 = \sum \frac{(d_k - Ar_k)^2}{\sigma^2}$$
$$\frac{d}{dA}\chi^2 = -2\sum \frac{(d_k - Ar_k)r_k}{\sigma^2}$$

• on trouve également le meilleur χ^2 avec la convolution de \vec{d} avec \vec{r}

$$A = \frac{\langle \vec{r} \cdot \vec{d} \rangle}{\langle \vec{r} \cdot \vec{r} \rangle}$$

▶ Un décalage temporel δt entre le signal $d'(t) = Ar(t - \delta t)$ et le modéle r(t) diminuerait la convolution $\langle \vec{r} \cdot \vec{d} \rangle$ et donc maximiser A par rapport à ce décalage est une façon de déterminer le t_0 du pulse.

Filtrage

- L'intégration sur une plage finie de N canaux (avec pondération w_k ou non) correspond à un filtre numérique à N coefficients
- ► Ces filtres font partie de la famille des filtres FIR *Finite Impulse Response*
- ▶ Moins pratique online, à cause du nombre de coefficients qui augmente avec la précision de l'échantillonage

Filtrage IIR (Infinite Impulse Response)

Moins de coefficients: utilise les mesures brutes (x[n]) et celles déjà filtrées (y[n])

Exemple: filtre passe bande Butterworth 1^{er} ordre obtenu avec mkfilter (http://www-users.cs.york.ac.uk/ \sim fisher/mkfilter)

Coupure basse
$$f_1 = \frac{1}{2\pi \ 2}$$
 et haute $f_2 = \frac{1}{2\pi \ 10}$

$$y[n] = (-1 * x[n-2])$$

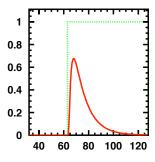
$$+ (0 * x[n-1])$$

$$+ (1 * x[n-0])$$

$$+ (-0.6629111067 * y[n-2])$$

$$+ (1.6209507238 * y[n-1])$$

$$GAIN = 5.643700253$$



Analyse en fréquence

- A utiliser quand le bruit n'est pas blanc: bruit à temps t corrélé avec celui à t'
- Suppose que le bruit à fréquence f n'est pas corrélé avec le bruit à fréquence f'
- ▶ Dans ce cas, le χ^2 suivant prend son sens (somme de termes non-corrélés):

$$\chi^2 = \sum_{n} \frac{(\tilde{d}_n - A\tilde{r}_n)^2}{\sigma_n^2}$$

- ightharpoonup \tilde{d}_n , \tilde{r}_n : composantes de Fourier de fréquence f_n de d(t), r(t)
- $ightharpoonup \sigma_n^2$ est la dispersion du bruit \tilde{b}_n à cette fréquence

Analyse en fréquence

▶ La minimisation du χ^2 donne:

$$A = \frac{\langle \vec{r} \cdot \vec{d} \rangle_b}{\langle \vec{r} \cdot \vec{r} \rangle_b}$$

où les produits scalaires $<>_b$ sont pondérés par σ_n

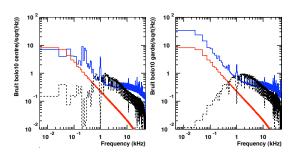
$$<\vec{r}\cdot\vec{d}>_{b}=\sum_{n}\frac{\tilde{r}_{n}^{*}\tilde{d}_{n}}{\sigma_{n}^{2}}$$

Si on veut conserver toute l'information sur la phase (et entre autres le t_0 du pulse), il faut tenir compte des valeurs complexes de \tilde{r}_n et \tilde{d}_n (i.e. traiter séparément les composantes $\sin \omega_n t$ et $\cos \omega_n t$)

Filtre optimal

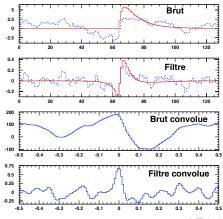
La convolution effectuée correspond à l'application du filtre "optimal" (où de Weiner):

$$\tilde{h}_n = \frac{1}{\langle \vec{r} \cdot \vec{r} \rangle_b} \frac{\tilde{r}_n^*}{\sigma_n^2}$$



Filtre optimal

Exemple avec un pulse + bruit 1/f + bruit blanc



Ajustement des temps

 t_0 peut s'ajuster en maximisant $A(t_0)$

• en le faisant apparaître t_0 dans l'expression de r(t - t * 0)

$$A = \frac{1}{\langle \vec{r} \cdot \vec{r} \rangle_b} \sum_n \frac{\exp^{j\omega_n t_0} \tilde{r}_n^* \tilde{d}_n}{\sigma_n^2}$$

- ightharpoonup en recalculant \tilde{r}_n pour différentes valeurs de t_0
- ▶ en transformant le filtre \tilde{h}_n dans l'espace des temps et effectuant l'optimisation de A dans l'espace des temps:

$$<\vec{\tilde{h}}^*\cdot\vec{\tilde{d}}>=<\vec{h}\cdot\vec{d}>$$

Filtre optimal?

- ▶ S'il n'y a pas de structure fine dans le filtre $h(\omega)$, on peut utiliser le filtre IIR équivalent
- ▶ Attention aux effects de bords! $g(t) \neq \theta(t t_{bord})g(t)$
- ▶ Attention si σ_n varie dans le temps (vérifier le χ^2)
- Attention aux bruits corrélés en fréquence!

Carre(t) =
$$\sin \omega t + \frac{1}{3} \sin 3\omega t + \frac{1}{5} \sin 5\omega t + \dots$$

trouver le carré moyen, puis le soustraire dans l'espace des temps est plus efficace, car tient compte de la correlation entre les phases de toutes les harmonique.

- ► Attention aux empilements
- Utiliser les corrélations entre différentes voies si possible

Conclusion

- ▶ Le traitement du signal ... c'est le traitement du bruit
 - rapport signal/bruit
- Pour éliminer le bruit de façon efficace, il faut avoir le modèle de bruit le plus précis
 - Structure en temps
 - Structure en fréquence
 - Corrélation avec d'autres signaux dans l'expérience
- C'est comme la musique: c'est du bruit tant qu'on n'a pas reconnu sa mélodie et son rythme.

