

DRTBT2012 : 7^{ème} école thématique Perspectives nouvelles des détecteurs cryogéniques

Le neutrino : histoire et perspectives, science et défis technologiques (2)

Claudia Nones

CEA/DSM/IRFU/SPP

Decay modes for Double Beta Decay

Two decay modes are usually discussed:

$$(A,Z) \rightarrow (A,Z+2) + 2e^{-} + 2v_{e}$$

2vBB

 2ν Double Beta Decay allowed by the Standard Model already observed – $\tau \geq 10^{19}$ y

 $[T_{1/2}(2v)]^{-1} = G_{2v}(Q, Z)|M_{2v}|^2$

 $(A,Z) \rightarrow (A,Z+2) + 2e^{-1}$

Neutrinoless Double Beta Decay never observed (except a discussed claim) $\tau > 10^{25}$ y

 $[T_{1/2}(0v)]^{-1} = G_{0v}(Q, Z)|M_{0v}|^2m_{\beta\beta}^2$

New physics beyond the Standard Model

Violation of lepton number conservation Possible only if v is a Majorana particle

Let's join the pieces

$$\langle m_{\beta\beta} \rangle = ||U_{e1}|^2 m_1 + e^{i\alpha_1} |U_{e2}|^2 m_2 + e^{i\alpha_2} |U_{e3}|^2 m_3 |$$

can be of the order of ~ 50 meV in case of inverted hierarchy

The physics reach of Ovßß

How difficult is it?

The experimental signatures

The shape of the two electron sum energy spectrum enables to distinguish among the two different discussed decay modes

An ideal experiment

SENSITIVITY S_{0v} : lifetime corresponding to the minimum detectable number of events over background at a given confidence level

Maximize Rate + Minimize Background

$$S_{0\nu} \propto \left(\frac{Mt_{live}}{b\Delta E}\right)^{\frac{1}{2}}$$

$$\int \left(\frac{Mt_{live}}{b\Delta E}\right)^{\frac{1}{2}}$$

$$\left(\frac{Mt_{live}}{m_{\beta\beta}}\right) \propto \left(\frac{b\Delta E}{Mt_{live}}\right)^{\frac{1}{4}}$$

<u>Desirable features</u>

Large Mass (~1 ton) Large Q value, fast $0\nu\beta\beta$ Good source radiopurity Demonstrated technology Ease of operation Natural isotope Small volume, source = detector Good energy resolution Slow $2\nu\beta\beta$ rate Identify daughter in real time Event reconstruction Nuclear theory

The bolometric technique

Heat sink - T_{b} Desirable features Thermal link Thermometer 🔶 Large Mass (~ 1 ton) Crystal Large Q value, fast $0\nu\beta\beta$ absorber Good source radiopurity Released Demonstrated technology energy Ease of operation 🔶 Natural isotope Signal: $\Delta T = E/C$ Small volume, source = detector Good energy resolution Time constant = C/GSlow 2νββ rate -> to develop high pulses the Identify daughter in real time detector has to work at low Event reconstruction temperatures (10 - 50 mK). Nuclear theory

Bolometers for $0\nu\beta\beta$

E. Fiorini, T.O. Niinikoski (1983)

Nucleus	I.A.	Q-value [keV]	Materials successfully tested as bolometers in crystalline form
⁷⁶ Ge ¹³⁶ Xe ¹³⁰ Te ¹¹⁶ Cd ⁸² Se ¹⁰⁰ Mo	7.8 8.9 33.8 7.5 9.2 9.6	2039 2479 2527 2802 2995 3034	Ge NONE TeO ₂ CdWO ₄ , CdMoO ₄ ZnSe PbMoO ₄ , CaMoO ₄ , SrMoO ₄ , CdMoO ₄ , ZnMoO ₄ ,
⁹⁶ Zr ¹⁵⁰ Nd ⁴⁸ Ca	2.8 5.6 0.187	Li ₂ MoO 3350 3367 4270	⁴ , MgMoO ₄ ZrO ₂ NONE → many attempts CaF ₂ , CaMoO ₄
		Cuor	icino, CUORE

TeO₂ bolometers: the main ingredients

MAIN ABSORBER

DBD source \equiv absorber

THERMISTOR

It contains a good isotope, ¹³⁰Te, that among the possible $O_V\beta\beta$ candidates presents several nice features:

- high natural isotopic abundance (33.87 %)
- high transition energy (Q ~ 2527 keV)
- reasonably favourable theoretical calculations of NME

The thermal signal is measured by means of a NTD Ge Thermistor working in the Variable Range Hopping regime:

$$R = R_0 \cdot \exp\left(\frac{T_0}{T}\right)^{\gamma}$$

An electrical read-out converts resistance changes into voltage pulses

Sensitive to thermal phonons

The Cuoricino experiment

Neutrinoless DBD

Underground National Laboratory of Gran Sasso located in the highway tunnel 3500 m.w.e. 24µ /m²/d ITALY

Ge/NTD thermometer

In Cuoricini sempiterna memoria

Data taking started in April 2003 and ended in June 2008. The data are separated in two runs (RUN I and RUN II), due to a major maintenance interruption

End of June 2008: Cuoricino has been shut down

Saturation of sensitivity Need of experimental space in hallA for further tests

Cuoricino/CUORE: the performance

C= 2 x 10⁻⁹ J/K Δ T= 0.1 mK/MeV τ_{rise} 50ms - τ_{decay} 300 ms

R ~ 100 MΩ ΔR= 3 MΩ/MeV ΔV=0.3 mV/MeV

CUORE R&D test: FHWM_{2615keV} = 4.6 \pm 1.2 keV Excellent energy resolution on the internal alphas from ²¹⁰Po: FHWM_{5407keV} = 2.4 KeV

Cuoricino Ovßß results

From Cuoricino to CUORE

Cryogenic Underground Observatory for Rare Events

From Cuoricino to CUORE through CUORE-0

CUORE-0 the first step of CUORE experiment

CUORE-0 will be assembled with the same procedures foreseen for CUORE (totally different from those adopted for Cuoricino) and operated in the old Cuoricino dilution refrigerator.

Main goals:

- full test and debug of the new CUORE assembly line
 - high statistics check of the improved uniformity of bolometric response
 - identify which operations are critical for the success of CUORE
 - reveal flaws and inefficiencies in the assembly procedures
- permit a thorough exercise of the analysis framework
- provide an opportunity to test the skill sets necessary within the collaboration

CUORE-0: detector assembly

CUORE-0: the tower is ready

Role of ¹³⁰Te bolometric experiments

Cuoricino/CUORE: the dominating background

Get rid of surface (alpha) contamination
 Move DBD peak above 2615 keV→ change isotope

If surface events are rejected...

Pulse shape discrimination in TeO₂

No detectable difference between α/β pulses in pure TeO₂ bolometers

Three methods were proposed to make TeO_2 bolometers sensitive to surface events and all them work at the prototype level.

(1) Surface sensitive composite bolometers

Astropart. Phys. 34, 809, (2011)

② Use of thin NbSi films (as Anderson insulators) as phonon sensors

J. Low Temp. Phys. 151, 871, (2008)

③ Coat all the crystal with a passive SC film and use an ordinary sensor

J. Low Temp. Phys. 167, 1029, (2012)

Surface Sensitive Composite Bolometers

(1) Surface sensitive composite bolometers

Astropart. Phys. 34, 809, (2011)

Protect each crystal face with a thin TeO_2 slab working as pulse shape modifier.

It worked in real size prototype, but would require important modification in the CUORE structure and relevant assembly complications.

Surface Sensitive Composite Bolometers

NbSi film equipped bolometers

② Use of thin NbSi films (as Anderson insulators) as phonon sensors J. LOW TENDE Phys. 757 877 (2008)

CSNSA

Technique first developed in the framework of Dark Matter by the FDFLWFISS collaboration.

Events depositing energy close to surface are distinguishable thanks to an enhanced athermal component.

Small size prototype detectors were successful, but they would require sensitive films covering all the faces, and nuclear NbSi film heat capacity would be huge at 15 mK.

Al film equipped bolometers

③ Coat all the crystal with a passive SC film and use an ordinary sensor

Demonstration of the rejection power for surface events in a TeO_2 crystal equipped with an Al layer as pulse shape modifier.

• Events close to surface determine a large population of quasiparticles in the film due to absorption of out-ofequilibrium phonons

CSNSN

- Exploit **quasi-particle life-time** in superconductive Al.
- Delayed component in the phonon pulse (pulse shape discrimination).

Scintillating bolometers

L. Gonzalez-Mestres, D. Peret-Gallix

"Easy" with scintillating materials

Intense R&D in LNGS in the last years Since 2011, a group in CSNSM work on this subject

Which absorber?

Nucleus	I. A. [%]	Q-value	<u>Underlined materials</u> are good scintillators
¹³⁶ Xe 8. ¹³⁰ Te 33 ¹³⁰ Te 33 ¹³⁰ Te 33 ¹³⁰ Te 33 ¹¹⁶ Cd 7. ⁸² Se 9. ¹⁰⁰ Mo 9. ⁹⁶ Zr 2. ¹⁵⁰ Nd 5. ⁴⁸ Ca 0.	.9 3.8 .5 .2 .6 .8 .6 .187	2479 2527 2802 2995 3034 Li₂MoO 3350 3367 4270	NONE TeO ₂ CdWO ₄ , CdMoO ₄ ZnSe PbMoO ₄ , CaMoO ₄ , SrMoO ₄ , CdMoO ₄ ZnMoO ₄ , a, MgMoO ₄ ZrO ₂ NONE \rightarrow many attempts CaF ₂ , CaMoO ₄

LUCIFER - ZnSe (LNGS, Rome, Orsay) ZnMoO₄ program (Orsay, Kiev, Novosibirsk, LNGS, Rome) CaMoO₄ program (Korea)

Scintillating bolometers - ZnSe

Astropart. Phys. 34 (2011) 344B

Astropart. Phys. 34 (2010) 143

Scintillating bolometers – $ZnMoO_4(1)$

ZnMoO₄ (Orsay, Como)

Phys. Lett. B 70 (2012) 318

Scintillating bolometers – $ZnMoO_4$ (2)

A detector of **24** g has operated at CSNSM

A big $ZnMoO_4$ of about 400 g is already at CSNSM and will be cooled down soon.

Orsay, France à Modane, France

It is now at LSM

ABSURD: A Background SUrface Rejection Detector

Luminescent envelope for TeO₂

TeO₂ crystal is equipped with a light detector as if it were scintillating

TeO₂ crystal is enveloped by a high efficient scintillating foil

Only surface events produce scintillation, read out by the light detector

Is TeO_2 luminescent (1)?

Indication of weak luminescence of TeO_2 traces back to several years ago

Optical properties of TeO₂ crystals

Transparent from 350 nm to infrared
 n=2.4

Threshold for Čerenkov emission: 50 keV for an electron 400 MeV for an alpha particle

Eur. Phys. J. C 65 (2010) 359

~125 photons for a $0\nu\beta\beta$ decay event in the 2-3.5 eV range

NIM A 520, 159, (2004)

Is TeO_2 luminescent (2)?

Light detector with Luke effect - Luks @ CSNSM

The energy threshold of a low- temperature light detector employing a semiconducting substrate can be improved by drifting the photon-induced electron-hole pairs by an applied electric field. Due to the heat dissipated in the substrate by the drifting electron-hole pairs the phonon signal is amplified.

Concentric electrodes done with the same technology of EDW-FID detectors.

Conclusions

 $> O_V \beta \beta$ is a crucial tool for neutrino physics.

>The role of low-temperature detectors is extremely relevant for future developments on neutrino physics

